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Abstract

Machine Translation (MT) models are
not perfect: they often fail to capture information
about syntactic, contextual, and morphological
features of translation languages. Such insights
can be potentially incorporated via language
families (LFs). Our paper is an analysis of
State-of-the-Art (SotA) MT models’ accuracies
with respect to whether languages of translation
belong in the same LF, with the aim of
identifying the properties and limits of MT
systems and highlighting areas for improvement.
Our analysis evaluates the accuracy of direct
translations and investigates whether using pivot
languages improves translation accuracy (TA).

Data is sourced from the Europarl
corpus for 11 European languages representing
three LFs and two isolates. Translations between
all 110 language pairs are generated using
DeepL and Google Translate (GT) and evaluated
using 6 metrics measuring a diverse set of
language properties. We report three sets of TA
data: Raw metric scores, pairwise translations
versus pivot translations, and DeepL versus GT.
We plot our results through heatmaps and look
for patterns within the data. We found that
translations to and from English significantly
outperform other translations, and the Romance
LF performs particularly well. Furthermore,
pivot translations have no significant benefit
over pairwise translations with respect to TA.

Our current progress is a gateway for
larger-scale research on this topic; we would
next include more languages (especially non-
European or low-resource), a more robust set of
corpuses, and more translation systems.

1    Introduction

Despite major improvements in machine
translation (MT), state-of-the-art models
underperform because they use traditional accuracy
metrics e.g. n-gram overlap and neglect to capture
information about syntactic, contextual, and
morphological features of translation languages. To
improve translation, such insights can be
incorporated via language families (LF), groupings
of languages related through descent from a
common ancestral language and that share features
such as script, syntax and pronunciation. While
translation accuracy (TA) and methodology has
gained attention in recent years, there is little
existing research on the relationship between TA
and the correlation between languages (as defined
by their belonging to the same family). In our paper,
we analyze the relationship between language
similarity with respect to LFs and TA. Furthermore,
we evaluate the effectiveness of translation through
pivot languages. Through such analysis, we can
understand the limitations of current MT models
and potentially suggest improvements therefor.

Pivot translating is a recent translation
concept that aims to exploit the inherently uneven
language understanding of models. If translation
from language A to language B performs below
expectation, the model might select a well-studied
‘pivot’ language, and define the aforementioned
translation as first translating from language A to a
pivot language, then from the pivot language to
language B. The hypothesis for pivot translations is
that they will perform significantly better than
pairwise translations, which simply translate directly
from language to language. The premier pivot



language is English, as it is by far the most
well-studied language in linguistics and language
research.

We find that there is a correlation between
languages’ belonging to the same family, and
translation accuracy. For instance, translations
between Romance languages perform particularly
well. Translations to and from certain languages
significantly outperform others: translations with
English and the Romance LF languages as either
source or target languages achieve higher accuracy
scores. We also discover that pivot translations do
not achieve significantly higher TA than pairwise
translations.

2 Related Works

Review of Existing Literature We can
divide past related works into Statistical Machine
Translation (SMT) and Neural Machine Translation.
The former is the old and somewhat outdated
approach, while the latter is the modern approach to
translation.

In SMT, Bayesian channel models are used
to predict conditional probabilities of potential text
translations given source text. This method cannot
simultaneously capture grammaticality of the
generated sentence and assess TA (Alekseyenko et
al., 2012). Other SotA models use similarity-
distance algorithms as a TA metric; it was found that
the effect of distance is correlated with the ability to
distinguish translations from a given source
language from non-translated using text phonetic
and lexical predictors (Gooskens, 2007). Such

techniques are effective for determining the
orthographic and lexical similarity of languages.

More recently, Neural Machine Translation
models like seq2seq models are examples of
Conditional Encoder-Decoder Language Models. In
the first major exploration into Neural Machine
Translation, Britz et al (2017) used the decoder to
predict the next word of the target sentence y
conditioned on the source sentence x. Neural
Translation models also have better performance
and employ better use of contextual domains and
morphological phrase similarities than Statistical
Machine Translation. They are also more efficient:
to be optimized end-to-end, a single neural network
does not require the users to individually optimize
the subcomponents. They also do not require feature
engineering and are more scalable, as the same
method is implemented for all language pairs.
However, neural methods are less interpretable than
statistical ones, as users cannot easily specify lexical
and grammatical rules/guidelines for translation
(Ruder et al., 2017).

To the best of our knowledge, none of the
existing research takes into account how
incorporating properties of languages in the same
family can improve the quality of translations.

3 Methods

3.1 Overview of Methodology
Figure 2 shows our full methodology for this

project. From a corpus we select 100 common
sentences in 11 languages representing language
families and isolates. We then perform pairwise and
pivot translations across the 110 language pairs



using DeepL and GT. For each pair, we compute the
TA between the source and target sentences using 6
different metrics that measure a variety of features,
from n-gram overlap to syntactical similarity. After
running these experiments, we visualize our results
through three different types of heatmaps and
analyze patterns.

The shared Europarl corpus among our 11
languages is our control variable. There are five
independent variables: translation source language,
translation target language, metric (one of the six),
translation system (DeepL or GT), and type of
translation (pairwise or pivot). Technically speaking,
'type of translation' is arguably not a true
independent variable, as GT is known to employ
pivoting; however, it is meaningful to assess
whether GT's pivot results correspond exactly to
GT's 'pairwise' results.

3.2 Data
Our data is extracted from the “Europarl: A

Parallel Corpus for Statistical Machine Translation”
dataset, a corpus of spoken words from the
proceedings of the European Parliament provided in
21 European languages. We select 11 languages
therefrom: French, Spanish, Italian, Portuguese
(Romance LF); English, Dutch, German (Germanic
LF); Finish, Estonian (Uralic LF); Greek (language
isolate) and Polish (Slavic; language isolate for this

paper). From this dataset, we randomly select 100
out of the over 600,000 sentences common to all the
chosen languages.

3.3 Translation Systems and
Computational Resources
We perform our experiments using two

translation models: DeepL and GT. DeepL, a newer,
proprietary model based in Germany, uses a CNN
rather than the traditional RNN and is regarded as a
pioneer for the neural network approach to MT.
DeepL includes smaller 'fix' mechanisms to make up
for the clear deficiencies of a CNN backbone. It is
known for being particularly 'human-like' in its
translations. On the other hand, the popular GT has
been built on neural network-like structures since
2016 to remedy overly-literal translations, and is
hailed as a SotA standard for MT. It includes over
100 translation languages, compared with DeepL's
29, and offers full webpage translations. GT is also
known to employ pivot translations, while DeepL
does not.

For our research, we use Jupyter Notebook
extensively, with occasional usage of Google
Colaboratory, a cloud-based Python Notebook. For
GT translations, we use the Translation API from
Google Cloud under Prof. Yoon Kim's group
account. For DeepL translations, we leverage
DeepL's free API. Calculating the accuracies with



our metrics include adapting the use of several
Python libraries: nltk for the BLEU, NIST and
METEOR scores; torchmetrics for the TER and
ROUGE scores; and comet for the COMET score.
Throughout the project pipeline, multiple standard
Python tools and modules—matplotlib, numpy, and
pandas—are also imported. Our exclusive file
format is .npy, which offers nearly 50 times faster
speed than a .txt equivalent.

3.4 Metrics
We evaluate our results using the BLEU,

NIST, TER, ROUGE-L, METEOR and COMET
scoring tools. BLEU is an accuracy metric based on
n-gram overlap and brevity penalty. NIST is BLEU
with some alterations: Whereas BLEU simply
calculates n-gram precision, adding equal weight to
each one, NIST gives greater weight to a rarer
n-gram. The TER metric evaluates the number of
actions required to change a translated segment into
one of the reference translations (NB: a lower TER
score means a higher performing model).
ROUGE-L measures the longest common
subsequence between the model-generated and
target translations. We compute the f-measure
scores, which average the ROUGE-L recall (how
much of the reference summary the system
summary is recovering or capturing) and precision
(how much of the system summary was in fact
relevant). The METEOR metric is based on the
harmonic mean of unigram precision and recall. It
also includes measures of stemming and synonymy
matching, along with exact word matching. Finally,
COMET is a neural framework for training
multilingual machine translation evaluation models.
In our case, we used a COMET model pre-trained
on Direct Assessments and MQM ratings, which are
translation assessments created by human
translators. The COMET metric should help
evaluate how “natural” a translation is, taking into
account language constructs that most traditional
metrics cannot consider, such as Function Words
(FW), Non-verbal Agreement (NVA) and Verb
Tense/Aspect/Mood (VT) agreement. All in all, we
consider 6 diverse metrics that, together, create

sufficient robustness for a comprehensive analysis
of language translation.

3.5 Preprocessing
Our Europarl corpus data is obtained as

approximately 200MB-large text files. We convert
them into a more useful dictionary representation
and save them as .npy files. For the technical,
granular details on our approach beyond that
provided in this paper, please see our GitHub code.

3.6 Generating Translations
We use pairwise translations as our baseline

translation system, in which the probabilities of
source and target sentences are used to find the best
translation. Given a vector s decomposed into
sequences of words, we translate each of the phrases
of source language to the target using phrase
translation distributions. Given a vector of source
phrases s, we predict the best target translation t
using EM algorithm:

Using the phrase translation distributions we
translate sequences of words:

with h the feature function and λ the weight for each
feature function. Finally, the model maximizes a
log-likelihood combination of feature functions to
choose the best translation.

We implement the DeepL translation
software, which uses syntactic tree banks to train
CNNs to predict the highest scoring target
translation on pairwise source target corpora.

Our second methodology uses pivot
translations. We develop another model, the pivot
model, with improves word alignments inside
phrase pairs. We are given a source phrase p from
the source language that is connected to the pivot
phrase EN in English, and then phrase EN is



connected with target phrase s which is in the target
language.

For implementing the models over k pivot
languages, k pivot models are then estimated using
linear interpolation. We use these methods for
estimating both the phrase translation probability
and the lexical weight respectively, which are
coefficients α and β.

3.7 Visualizing Results
After translation accuracies are calculated,

we use matplotlib to create three sets of heatmaps.
The first is a heatmap of TA for each pair given a
metric, translation service (DeepL or GT) and
translation method (pairwise or pivot). The second
is a heatmap of the differentials between pairwise
and pivot TA for each pair for a given metric and
translation service. The third is a heatmap of the
differentials between DeepL and Google Translate
TA for each pair for a given metric and translation
method. For a 11 by 11 'matrix' of translation pairs,
with rows representing start language and columns
representing target language, accuracies or
differentials thereof are generated. Green was the
main color, with darker shades indicating better
accuracy (which for all metrics means more positive
numbers, except TER, for which the opposite
holds).

4 Results

We break our results discussion into three
sections: Raw metric scores; Pairwise vs pivot

scores; and DeepL vs GT. As a reminder,
translations are conducted from row to column
language, e.g. a translation from English to Dutch is
row 2, column 1 (with 1-based indexing).

4.1 Raw Metric Scores

Figure 3: GT pivot translation accuracies with NIST.

Across the board with all metrics, we see
that translations to and from English significantly
outperform translations without English as neither
the source nor target language; in Figure 3, this is
the two bands outlined in red. This pattern is
observed also in the 'negative metric' TER
(Translation Error Rate), in which smaller numbers
indicate better performance.

Out of the three language families studied,
the Romance LF (outlined in orange in Figure 3) is
particularly convincing, with high intra-LF
translation accuracies, appearing visually as a
'darkened square' near the middle of the heatmaps.
In other words, intra-Romance translations perform
better than non-intra-Romance language
translations. For the other language families, more
languages would have to be used to generate
convincing patterns (e.g. including Danish in the
Germanic family; the Uralic LF might be extended
from Finnish and Estonian to include the distant
relative Hungarian).



Systematic TA deficiencies emerge when
assessing translations to specific languages using
specific metrics. As seen in Figure 3 in pink outline,
translations to Finnish and Estonian are of
significantly lower accuracy than translations to all
other languages. For translations to Greek assessed
with ROUGE, performance is numerically only half
as good as all other pairwise or pivot translations.

4.2 Pairwise vs Pivot Scoring
With GT, which automatically pivots, one

obtains a nearly uniformly ±0.0 accuracy differential
between pivot and pairwise accuracy (see Figure 4;
note that the shading is almost the same color). As
for DeepL, there are slight but statistically
insignificant improvements produced by pivot
scoring, usually less than +0.02 for each metric (see
figure 4). One has evidence that pivot language
translations do not significantly improve DeepL.

Figure 4: Pivot vs pairwise accuracy differential in
GT using BLEU (left); in DeepL (right). The

highest-magnitude differential was 0.02.

4.3 DeepL vs GT
DeepL generally outperforms GT across the

board, especially in pivot accuracies through NIST
(see Figure 5), with TA to Romance languages
particularly noteworthy, at +0.20 on average. We
find that DeepL almost always performs slightly
better than GT across all configurations of
independent variables. This is particularly evident
using the NIST and COMET metrics. We also notice
that the greatest differential occurs with translations
to Romance languages, while translations to Dutch
and Polish offer the least improvement when
switching from GT to DeepL.

Figure 5: DeepL vs GT performance on pivot
accuracies with NIST. Pairwise TA has a similar

graph. Deeper color indicates better performance by
DeepL over GT.

5 Discussion

5.1 Raw Metric Scores
For future experiments, to more conclusively

analyze the impact of LF translations vs non-LF
translations, more LFs will be consulted, and
existing LFs will be expanded. For instance, the
Germanic LF can be expanded to include Danish,
while the Finno-Ugric LF can be extended to
include Hungarian, a distant relative of Finnish and
Estonian.

The systematic translation gaps can be
explained by either metrics' being mal-adjusted for
certain languages, or the underperformance of
translations for certain languages. This was
especially obvious for ROUGE with Greek on both
DeepL and GT (see Figure 6). As no other metric
records such a gap, ROUGE's applicability to Greek
is called into question. However, for translations to
Finnish and Estonian, multiple metrics (NIST, TER,
METEOR, and BLEU) indicate underperformance,
while COMET indicates overperformance (see the
pink outline at Figure 3). As almost all metrics
suggest some sort of systematic performance
imbalance, it is more likely that MT systems
perform worse with Finnish and Estonian, as



opposed to this being the unreliability of the
metrics.

Figure 6: ROUGE DeepL pairwise TAs. Note the
abysmal performance of translations to Greek. With
respect to earlier analysis, the strong performance
by English and the Romance LF can be observed.

To resolve the translation gap issue, one can
manually inspect translations, e.g. one by one,
selecting sentences and assessing translation quality
to see what errors are observed.

Although it is tempting, we do not combine
all 6 metrics together for a 'supermetric' for several
reasons. The concept of one metric for translation
accuracy is unattainable and will inevitably either
leave out critical aspects of translations or dilute
them to the point of meaninglessness. Furthermore,
there is no rigorous or mathematically provable
justification for any arbitrary weighting of the
metrics.

5.2 Pairwise vs Pivot Scoring
Translation pivoting fails to significantly

improve DeepL performance. It appears DeepL's
neural network translation already accounts for the
'human-like' quality of translations, making
translations between any two languages particularly
understandable, ergo reasonably good. On the
contrary, GT's translations are regarded as more
granular and word-for-word, meaning pivoting

would substantially improve otherwise cumbersome
translation.

Figure 7: COMET DeepL pairwise vs pivot TAs.
The highest improvement was only +0.03, recorded

with French to Ducth and Italian to Portuguese.

However, pivot languages may be useful for
translations involving low-resource and
understudied languages, such as Native American
languages (e.g. Cherokee) and African languages
(e.g. the Bantu family). As DeepL does not offer
such options (and is in general quite restricted, with
under 30 languages offered at the time of writing),
and GT struggles with such languages, it may be
wise to pivot to English in translations.

5.3 Summary of Findings
Our paper yielded insights on translation

through LFs and pivot languages. We found that the
Romance LF performs better than average, that
pairwise translations involving English perform
exceptionally well, and that certain languages'
translations underperform or metrics are unfit for
accuracy measurement. We also found that pivoting
in DeepL had no significant improvement on
translation accuracy, and that DeepL translations
achieve better TA than GT.

6 Impact Statement

Our work—which is fundamentally
analysis-driven—examines part of the puzzle of TA.



The natural continuation of this project is expansion
of scope. In its current form, the project is restricted
by translation languages (our 11 are all
Indo-European and mostly well-studied) and
translation systems (just GT and DeepL). Thus, we
suggest the following avenues upon which to
expand our research. First, we can be more
encompassing with our LFs, involving more
languages per family. We should test non-European
languages, especially Chinese and Arabic, though
finding a suitable corpus to serve as the control
variable will be difficult, as it is very hard to find a
database with e.g. English, Chinese, and Arabic
sentences, let alone for all our languages.
Furthermore, more translation systems can be
employed to increase our confidence for consensus,
such as Yandex Translate and Microsoft Translate.
Doing so could provide us more statistical
confidence in our assessment of metric impropriety
versus MT deficiency; in other words, if we see an
unusual pattern, we can more easily infer if it is an
unsuitable metric or simply MT model inaccuracies
if we had more MT models.

The greatest societal impact of our work
would be its natural extension into low-resource
languages, particularly Native American (e.g.
Cherokee) and African LFs (e.g. Bantu). By
analyzing deficiencies in MT with respect to such
languages, we can turn those insights into MT
model improvements to make translation models
more robust and accurate, so that they represent a
broader and more complete spectrum of human
linguistics. We posit that, by understanding the
mechanisms and logic of diverse LFs, especially
understudied ones, we can improve TA for
languages in general. By including low-resource
languages in our greater analysis, we would also
preserve their heritage, a critical issue as such
languages are in danger of extinction.

Once exploration of the above problem is
reasonably complete, we can also pursue a 'reverse
experiment', as hinted in our project proposal. For
that project line, when a translation is performed

from an unknown source language to a known target
language, we can analyze the metrics of translation
to attempt to deduce the source language (this is in
similar spirit to guessing an ESL speaker's country
of origin). Such a project is interesting because there
is little existing research on this question. A
potential idea for analysis is to use K-means
clustering on existing ‘training’ language pairs for
which both the source and target languages are
known. This project also has the potential to
advance understanding of low-resource languages,
as including them in such research creates links
between well-understood/researched languages like
English and Spanish and these low-resource
languages. Furthermore, evaluation and analysis of
this reverse experiment can potentially identify
flaws in current MT systems and lead to suggestions
on improvements to such systems, just as was the
extended/eventual purpose of our paper as well.

Acknowledgements

Thank you to the 6.8611 course staff for
answering our questions regarding NLP research. A
special thanks to Prof. Yoon Kim for providing us
access to the GT API and offering advice and
directions for LT research; Dr. Michael Maune for
insights on linguistics and writing; and Saaketh
Vedantam, our Teaching Assistant.

Footnotes and References

1 Arabic is not a language isolate, as Hebrew and
Amharic are in the same (Semitic) family, but in our
research, it is the lone Semitic language.

2 Obtained from a page on DeepL's justification,
https://www.deepl.com/en/why-deepl-pro.

Alexander V. Alekseyenko, Quentin D. Atkinson,
Remco Bouckaert, Alexei J. Drummond, Michael
Dunn, Russell D. Gray, Simon J. Greenhill, Philippe
Lemey, and Marc A. Suchard. 2012. Mapping the

https://www.deepl.com/en/why-deepl-pro


Origins and Expansion of the Indo-European
Language Family. Science, 337(6097):957–960.

Charlotte Gooskens. 2007. The Contribution of
Linguistic Factors to the Intelligibility of Closely
Related Languages. Journal of Multilingual and
Multicultural Development, 28(6):445.

Francois Barbançon, Steven N. Evans, Luay
Nakhleh, Don Ringe, and Tandy Warnow. 2013. An
Experimental Study Comparing Linguistic Phyloge-
netic Reconstruction Methods. Diachronica, 30(2):
143 – 170.

Britz, Anna Goldie, Minh-Thang Luong, Quoc Le.
2017. Massive Exploration of Neural Machine
Translation Architectures”, https://arxiv.org/abs/
1703.03906.

https://arxiv.org/abs/1703.03906
https://arxiv.org/abs/1703.03906

